agentic-ai-production-system

API Reference

Overview

The Multi-Agent AI System provides a comprehensive API for interacting with specialized AI agents through a coordinated workflow system.

Core Components

CoordinatorAgent

The main orchestrator that manages workflow execution and agent communication.

Methods

process(input_data: Dict[str, Any]) -> Dict[str, Any]

Processes a task through the multi-agent workflow.

Parameters:

Returns:

Example:

input_data = {
    "task": "Explain machine learning basics",
    "context": {"audience": "beginners"}
}
result = await coordinator.process(input_data)
get_all_agent_metrics() -> Dict[str, Any]

Returns performance metrics for all agents in the system.

health_check_all_agents() -> Dict[str, Any]

Performs health checks on all agents and returns system status.

ResearchAgent

Specialized agent for information gathering and analysis.

Methods

process(input_data: Dict[str, Any]) -> Dict[str, Any]

Performs research based on the input query.

Parameters:

Returns:

ContentAgent

Specialized agent for content generation and refinement.

Methods

process(input_data: Dict[str, Any]) -> Dict[str, Any]

Generates content based on the input request.

Parameters:

Returns:

refine_content(content: str, refinement_instructions: str) -> Dict[str, Any]

Refines existing content based on specific instructions.

ValidationAgent

Specialized agent for quality assurance and safety validation.

Methods

process(input_data: Dict[str, Any]) -> Dict[str, Any]

Validates content for safety and quality.

Parameters:

Returns:

Configuration

Config Class

Manages system configuration with validation and environment variable support.

Key Parameters

Health Monitoring

HealthChecker Class

Provides comprehensive system health monitoring.

Methods

check_system_health() -> Dict[str, Any]

Performs comprehensive system health check including:

get_system_metrics() -> Dict[str, Any]

Returns current system resource metrics.

Error Handling

The system implements comprehensive error handling:

Retry Logic

Input Validation

Output Filtering

Usage Examples

Basic Usage

from src.agents.coordinator_agent import CoordinatorAgent
from src.core.config import Config
from src.utils.logger import setup_logger

# Initialize system
config = Config(openai_api_key="your_api_key")
logger = setup_logger()
coordinator = CoordinatorAgent(config, logger)

# Process a task
input_data = {"task": "Explain renewable energy benefits"}
result = await coordinator.process(input_data)

if result["success"]:
    print(result["result"]["final_output"])

Research-Specific Usage

from src.agents.research_agent import ResearchAgent

research_agent = ResearchAgent(config, logger)

# Factual research
research_input = {
    "query": "Current renewable energy statistics",
    "research_type": "factual"
}
result = await research_agent.process(research_input)

Content Generation

from src.agents.content_agent import ContentAgent

content_agent = ContentAgent(config, logger)

# Generate technical documentation
content_input = {
    "content_request": "API documentation for user authentication",
    "content_type": "technical",
    "style": "technical",
    "length": "long"
}
result = await content_agent.process(content_input)

Content Validation

from src.agents.validation_agent import ValidationAgent

validation_agent = ValidationAgent(config, logger)

# Comprehensive validation
validation_input = {
    "content": "Content to validate...",
    "validation_type": "comprehensive",
    "strict_mode": True
}
result = await validation_agent.process(validation_input)

Rate Limiting and Performance

Rate Limiting

Performance Optimization

Monitoring

Security Considerations

Input Security

Output Security

API Security