API Reference
Overview
The Multi-Agent AI System provides a comprehensive API for interacting with specialized AI agents through a coordinated workflow system.
Note: This is a comprehensive API reference. For the complete documentation with all details, see the full API documentation.
CoordinatorAgent
The main orchestrator that manages workflow execution and agent communication.
process(input_data)
Processes a task through the multi-agent workflow.
# Example usage
input_data = {
"task": "Explain machine learning basics",
"context": {"audience": "beginners"}
}
result = await coordinator.process(input_data)
Parameters:
input_data(dict): Task information with 'task' and optional 'context'
Returns:
success(bool): Whether workflow completed successfullyresult(dict): Workflow execution resultsworkflow_plan(dict): The executed workflow plan
ResearchAgent
Specialized agent for information gathering and analysis.
# Research example
research_input = {
"query": "Current renewable energy statistics",
"research_type": "factual"
}
result = await research_agent.process(research_input)
Research Types:
- general: Comprehensive research on any topic
- factual: Focus on verifiable facts and data
- analytical: Deep analysis with insights
- comparative: Compare multiple options or perspectives
ContentAgent
Specialized agent for content generation and refinement.
# Content generation example
content_input = {
"content_request": "API documentation for user authentication",
"content_type": "technical",
"style": "technical",
"length": "long"
}
result = await content_agent.process(content_input)
Content Types:
- explanation: Clear, structured explanations
- summary: Concise summaries
- analysis: Detailed analysis
- creative: Creative content
- technical: Technical documentation
ValidationAgent
Specialized agent for quality assurance and safety validation.
# Validation example
validation_input = {
"content": "Content to validate...",
"validation_type": "comprehensive",
"strict_mode": True
}
result = await validation_agent.process(validation_input)
Validation Types:
- safety: Safety and content filtering
- quality: Quality and coherence checks
- technical: Technical accuracy validation
- comprehensive: All validation types
Configuration
System configuration with validation and environment variable support.
from src.core.config import Config
# Initialize with custom values
config = Config(
openai_api_key="your_api_key",
max_retries=5,
timeout_seconds=60
)
Key Parameters:
| Parameter | Type | Default | Description |
|---|---|---|---|
| openai_api_key | str | - | OpenAI API key (required) |
| max_retries | int | 3 | Maximum retry attempts |
| timeout_seconds | int | 30 | Request timeout |
| log_level | str | INFO | Logging level |
Health Monitoring
Comprehensive system health monitoring and metrics collection.
from src.core.health import HealthChecker
health_checker = HealthChecker(config)
health_status = health_checker.check_system_health()
# Get system metrics
metrics = health_checker.get_system_metrics()
Usage Examples
Basic Usage
from src.agents.coordinator_agent import CoordinatorAgent
from src.core.config import Config
from src.utils.logger import setup_logger
# Initialize system
config = Config(openai_api_key="your_api_key")
logger = setup_logger()
coordinator = CoordinatorAgent(config, logger)
# Process a task
input_data = {"task": "Explain renewable energy benefits"}
result = await coordinator.process(input_data)
if result["success"]:
print(result["result"]["final_output"])
Error Handling
try:
result = await coordinator.process(input_data)
if result["success"]:
# Handle successful result
output = result["result"]["final_output"]
else:
# Handle workflow failure
error = result.get("error", "Unknown error")
print(f"Workflow failed: {error}")
except Exception as e:
# Handle system error
print(f"System error: {e}")